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The present study of the stability of the rotation on a string of a solid with a cavity filled 
with an ideal fluid, again uses the method developed in [I]. The principle of this method 
consists in the description of the motion of the fluid with respect to a system of coordinates 

fixed with respect to the rigid b~~perfo~~g motion under the action of the fluid, its own 
weight and reaction forces of the suspension. 

The problem considered below was, with the fluid absent, investigated in 121. Another 
limiting case corresponding to a string of xero length is the well known problem of Sobolev, 
investigated iu [l and 31. We shall utiIise some of the methods from the above works. 

1. Let a symmetric rigid body suspended on an ideally flexible,inexttnsible and 

inertialess string of length I, rotate with a constant angular velocity w about a vertical 

axis in a steady motion (Fig. l).Inside the body, there is a cavity, which has the form of 

an ellipsoid of revolution, and which is completely filled with an ideal incompressible 

fluid. The axes of symmetry of the cavity and of the body coincide. During the steady motion 

the fluid rotates with the body, as if they were a single rigid body. We shall investigate 

the stability of such a stationary motion. 

2. We shall consider first the derivation of the differential equations of the body in 

question, aasuming that this motion does not differ much from the above mentioned 

stationary rotation whose angular velocity about a vertical axis is o. 

We shall introduce the fixed system of coordinates (r/c which haa the vertical axis 4 
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and its origin O1 at the point of attachment of the string to s fixed 

support, and also the moving system t”tl”p with its origin,Qzat 

the point at which the body is tied to the string (Fig. 2). 

The corresponding axes of these systems are parallel. At the 

point 0 we shall also locate the origin of the system of coordinates 

x y I rigidly connected to the body. Axis z of this system will 

coincide with the axes of symna try of the body and the cavity, and 

the axes r and y will lie in the plane perpendicular to the axis I 

so as to form together a rectangular system of coordinates. 

The position of the string with respect to the system &I[ 

will be defined by two angles x and cc; at the same time, X is the 

angle between the axis 5 and the projection on the axis I) [of the 

straight line directed upwards along the string, while p is the 

angle between that line and the plane v<(Fig. 21. 

The position of the solid body with respect to the system 

E” tj”6” is determined by three EnlerKrylov angles (Fig. 31: 

FIG. 2 FIG. 3 

the angle u between the axis 6” and the projection of the axis of symmetry of the body 

(sxis I) on the plane q”r ; the angle B between the axis I and the same plane ‘$p 

and the angle cp between the axis x and the auxiliary axis [“which is at the right 

angles to the rrxis and lies in the plane Fz. 

The cosine table of the angles between the systems of coordinates &I 5 snd x y t or 

(which is the same), between the E”tl”c and z y I in the above case have the form 

E n c 

z CO6 p CO6 cp sinasinj3coscpf -sin/3cosaccecp+ 
+ co6 a sin cp +sinasincp (2.11 
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Y - cos psin ‘p -ssinasin/3sincp+ sinpcosasinq+ 
+ cos a co8 cp +sinacoscp 

z sin p -sinacosp cos a cos p 

It is easy to see from Fig. 3 that the projections ax, my and ox of the angular 

velocity of the system of coordinates xyr on its own axes will be 

da 
Ox = ~COSfl Coscp Sd$sincp 

da 
q/ = -xt cos fl sin cp + $ cos cp 

wz = 

(2.2) 

For future ase we shall also define the coordinates of the point 0 at which the body ia 

attached to the string in terms of the system (74 We have 

E, = - 1 qin CL, qO= I cosy. sin h, p. = - 1 cos c1_ co9 h (2.3) 

The expression for the kinetic energy of the solid can be written In the form 

% %I 0, (2.4) 

T= -$- mv02 -/- m ‘G YG ‘G 

@0)X @oly @0)2 
+ +- [(A + ml?) (oXa + wu2) + Coz21 

Here m is the mass of the rigid body ; A -I- mb2 = B -I- ml,’ and C are its 

moments of inertia with respect to the axes x, y and I ; u. is the absolute velocity of the 

origin 0 of the coordinates ; zG, yG, zG are the coordinates Of the Center Of gravity of 

the body in the system xyx ; 1, is the distance between the center of gravity of the body 

and the point at which it is attached to the string (Fig. 1). 

From the expression (2.4) and the Eormalas (2.21, and (2.3). we obtain an explicit 

expression for the kinetic enagy in terms of generalixed coordinates cz , p, h, and ,u aad 

generalized velocities duldt, dfl!dt, dhldt, dpldt, and dvldt (the generalirsd 

coordinate up is cyclic), which is 

T = 4 m[la (-$-) + la CosaP ($-)‘I + mLl $ COS p [-$- sin p sin (a - h) + 

+g cos p cos (u - A)]+ ml11 $f [$ cos p cos p + 

dp. . 
+~sin~stnpcos(a -q-g 

(2.5) 

co9 p sin p sin (a -Q] + 

+ +(A + mka)[($)‘cosap + ($)-)‘I + $C[$sinp + g] 

We shall now sxprass the equations of motion of Ilhe solid by using the mcond 

Lagrange’s method. Restricting oarselves to the infintesimals of the first order with 

respect to the coordinates A, j.& u 9 and fl and their tkme derfvatives, we obtain the follow- 

ing set of linear differential eqaations with constant coefficients : 
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c ddg 
dt dt = Q, 

3. The right hand aides of the equations (2.6) represent generalized forces which 

correspond to selected independent coordinates of the rigid body. These quantities appear 

as coefficients on perturbing the corresponding generalized coordinates appearing in the 

expression for the elementary work 6W done by active forces acting on the b aiy during its 

arbitrary displacement. We have [4] 

where P is the principal vector of all the active forces applied to the body and L, is their 

principal moment with respect to the point 0; 6r, is a possible displacement of the point 

0, 6y is the vector of possible angular displacement of the body. 

We shall denote by PC, P,, and PC, the projections of the vector P on the axes [, 71 

and (and by La, LB and L, th e sums of the moments of the active forces with respect 

to the axes E”, TJ’ and I (Fig. 3). 

Then, for small angles Q and @ we shall obtain the following expression for 6w 

6W = P&o + PA0 + P&o + Ua + L$P + L& (3.21 

or, using (2.3) and assuming that the angles x and p are also small quantities 

6W = 1 (P, + hP,) 6h + 1 (P,p - Pd W + Ma + WP + J&W (3.3) 

From the last expression it follows 

Qx = 1 (P.~ + M,), Q, = 1 (Q-t- J’,), Q, = -L QB = $7 Q, = Lq (3.4) 

The active forces acting on the body are the force of gravity mg and the forces 

exerted on the body by the enclosed fluid. From this it follows that the generalized force 

Q, is equal to zero. In fact, it represents the sum of the moments of the force of gravity 

and of the forces due to the pressure of the fluid with respect to the z-axis. However, 

because of the symmetry, the center of gravity of the body is on the z-axis and the vector 

representing the pressure of the fluid on the body crosses this axis everywhere. 

Considering the cosine table (2.1), the formulas (3.3) and the smallness of the 

angles a, p, 3\. and cc, the equations of motion (2.6) can be written in the form 

ml 
( 
1 TG -I- 1, gr) = - mglh + 1 [F, sin cp + F, cos cp - F,a] + lF,h (3.5) 
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ml 1 
( 

3 +I1 $) =-mglp-1 [F,coscp-FF,sincp+F$] +lF,p 

(A + mlla)d$+ ml,1 2 + C 22 = -mglla+ M,coscp-M, sincp 

(A+ ml12)f$+ ml,l:$ -C’s$ = -mgl$ +M,sin q~~+M,costp 

Cd!%=() 
dt dt 

In these equations, besides the quantities already known, g is the acceleration due to 

gravity and 

F, = ’ p” cos xvdq 
1% 

F,= ’ p*cosyvd6, 
IS 

F, = 
ss 

p* cos zvdcs (3.6) 
0 0 0 

are the projections on the axes z, y, and t of the principal vector of the pressure forces 

exerted by the fluid on the body. 

Similarly 

(3.7) 
?i. 

M, = 
I1 

(p*y cos zv - p*z cos yv) da, M, = 
ss 

(p*z cos xv - p*x cos zv) da 
0 0 

are the projections on the axes .v and y of the principal moment of the forces mentioned 

earlier, with respect to the point of suspension 0. The integration in the relations (3.6) 

and (3.7) is made along the aide of the cavity 0; ~0s xv, ~0s 9~ and cos zv ace the 

direction cosines of the external normal v to the surface of the cavity; z, y and I are the 

running coordinates of the element of surface do. 

The formulas (3.6) and (3.7) see [5] 1 can be replaced by the following 

y?&z?i$dr, M,= 
ssst 

aP* ap* dz 
zax-x-z- 1 (3.9) 

7 r 

Here, the integration is performed over the whole volume of the cavity. 

4. In order to determine the pressure p’ inside the fluid in terms of the coordinates 

x, y and z and the time t, we shall consider the equations of motion of the fluid with 

respect to the moving system of coordinates ryz stationary with respect to the rigid body. 

In those eqoations we shall consider the projections z&, z.+,, and uz of the relative 

velocity of any particle of the fluidrand their derivatives with respect to the coordinates, 

to be small. Disregading, furthermore, the products of small quantities, we get 
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(4.1) 

The symbol (xyt) mr ans that the two other formulas are obtained by circular permuta- 

tions; w$, WUe, and r&e are the projections on the x, y and I axes of the translational 

acceleration Wxc, WY’, and WZ’ of the Coriolis acceleration of a fluid particle, 

COS 5x, CW Q#, and cos 52 are the direction cosines of the axis [in the xya system 

of coordinates. The latter terms are equal to the quantities cz sin q) - @ COS rp, 

a cos v -j- 8 sin Cp and I. respectively (Fig. 3 and (2.1)), with the accuracy of up to the 

second order terms of the small angles stand 0. The projections of translational accelera- 

tion are given by the formulas 

da, wz” = wro + --&- z - d; y + 0, (x0, + yorr + zw*) - 0% @Xz) (4.2) 

Here w,O, wyo, and w,o are the projections on the axes x, y and z of the total 

acceleration of the point 0, which is the origin of xy t coordinate system. 

These projections can be expressed with accuracy of up to the second order in terms 

of the derivatives of the angles a t p, h and p by 

With the same accuracy we obtain by (2.21, 

From the fast equation of (3.5) it follows that o = con&, and if we disregard an 

un~po~~t constant, then q = o_& Neglecting furthermore in the expressions (4.2) 

the terms of the second order in ox and oy (which are of ‘the order of da / dt and 

4. dt), and also the terms which include the derivative of wx with respect to time, 

we get 

Gl.5) 

The projections of the Corfolfs acceleration on the x, y, and z axes are equal [41 to 

Here also, one should neglect the terms in which O, and my, appear as multipliers 

and write wg = o. 
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Taking the formalas (4.2) and (4.6) into account, the eqnetions (4.1) take the form 

Where 
(4.8) 

PI = p* + P fez (aax + YOU) - ‘l2o’ W + Y”)l + pg Iz (a sin cp - P cos VP) + 

+~(acoscp+~sincp)+~l+P(~~“+~~o+~~,O) + PZ 

aad OX, OU, Uk”, t$,‘, and wzo are determined by the equations (4.3) and (4.4). 

The functions ux, uy, and uf must, furthermore, satisfy the condition of incompress- 

ibility 

a!.+$+!+ 
(4.9) 

and the boundary condition 

ux co9 xv + uy cos yv + uz cm zv = 0 (4.10) 

The latter equation means that the projection of the relative velocity of a flaid 

particle in contact with the boundary of the cavity, onto the axis normal to this bonndsry, 

is equal to zero. 

5. Following the work of Sobolav [3], we search for uz, uy and ut in the form 

Here U, (t) ad U,, (t) are determinable functions of time+ ; Za is the distance 

between the center of the ellipsoidal cavity and the origin of the x y z coordinate system 

(Fig. 1). 

We denote the major and the minor semi-axe of the ellipsoidal cavity by II and c 

respectively. Then, its equation will take the form 

xa + Y’ T$~=f 

and the direction cosines of the normal v in the r y z coordinate system will be 

6.2) 

. ..-_ 

+ Also see the note at tits bagInning of the work fll. 
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cosm =%, eosyY== ~+w= D 

8 (z + fef (5.31 

D = v’c” (9 + y”) + u* (2 +p (5.4) 

By direct substitution of the relations (5.1) and (5.3) into the boundary condition (4.10) 

and naing the condition of incompressibility (4.9) we can see that the latter is identically 

satisfied. 

Let us now consider the system (4.7). Multiplying its first equation by cos xv, the sec- 

ond by COB 7~ and the third by cos IV and adding, we obtain by utilising also (5.1) and (5.3). 

The last relation becomes an identity if we write 

Pl = PZ IS* (t) + YQ* w + P I&* (4 +YQ,* WI t5.6f 

and choose the fttnctione P* (t), PI* (t), Q* (t) and Q1* (t) as foIlowe: 

(5.7) 

P*(t)=-&[dy(t)- $q, &* (t)= a* [ a2 1+ ou, (t) $1 

o*(q = &[--au,(t) +g, Ql* (t) =-$$[ aa 2+ ou, (t)p] 

Let us now multiply the second equation of the system (4.7) by i =v- and add 

it to the first. Then by using the equalities (5.11, (5.6), (5.7) and sfmplyfing by the factor 

I + 4 we obtain the relation necessary for the determination of the fnnctions Ux ft) and 

Uy 0). i.e. 

C (~2 + 3) -$ + Zwa8i] [U,(C) + iU, (t)] = 2a2i (2 + i ‘2) (5.8) 

6. Now, let us investigate the system (3.5). Let us multiply its second and fourth 

equations by i = v-‘-1 and add the first to the second and the third to the fourth. 

Then, let us also introduce the complex functions of the real variable t 

5* =a + 4% z* =h +ip 

Taking into consideration the third equality of (4.4) we have 

(6.1) 

(A -+- mZ12) g - it% ‘g + m&2 z + m&c* = (M, + iM,) eg”t 

m 1 @g + l1 fl$) + (mg-FP,) z* = -i (F, + iF,,)eiot -F&* 
( 

(6.2) 
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To calculate the expressions p, + ipv, Fz, and M, + iMy, which appear 

in the right hand sides of the system f6.2), we substitute into the formulas (3.8) and (3.9) 

the expressions for the pressare p* foand by eliminating the variable pt between the 

relations (4.8) and (5.6). Aleo we note, that 

sss p (2” - P> dt = SsS p (22 - x2) df = -& npaac (cs - at) + mllaa 
+ + 

Here, in addition to the symbols already seen earlier, p and m, represent respectively 

the specific density and the maas of the fluid which fills the e~~fpsoidal cavity of the 

rigid body. 

If, furthermore, we notice that according to the formula (4.3). (4.4) and (6.1) 

(6.4) 

then, after a few rather simple calculations and the use of the equalities (5.7), (5.8) we 

get the required expressions of J’% + iFti aud F, 

F, + iF, = - mli 
E 
I $$ + la f$ + gc*]-e+mt, F,=- mxg (6.51 

and also the differential eqaation for &I, + iilf,, which is 

Mx+iMy=k_-+ - aa) dac*jdP + 2oica G<*/@ + (aa + S) aa dc*jdt 
(aa + 8) d 1 dt + %kzsi 

e_imt _ 

(6.6) 
- mlZa2 $ f- mlgE2{* + m&J *g + iwk ‘g] e-f-f 

where 

k = ‘l,npa% (19 - a”) 
(6.7) 

7. Eliminating F, + iF,,, Fz and M, + iA#, from (6.2) by using the relation 

(6.5) and (6.6) we obtain the foIlowing system of equations with respect to the complex 

fanctions of time c* and z* 
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We assume that the solution of (7.1) has the form 

<* z ~O&l, z* = zOeii.t (7.3) 

At the same time, the characteristic equation reduces to the following: 

f (h; o) = (A0 + lq)3L5 - o [C + (A” + k)qlA4 -+ I - K - (A * + Icy) $ + 

+Cdq +ko2(1 -q)lh3+[Kq +C+f+(A*+k)qloh2 + f741 . 

-f+ iK - Id (1 - 7) - C6PTll h - Kwgf = 0 

Where 
A” =A* - zc (ml1 + m,l,) 

(7.5) 

The equations (7.1) together with the equality aL = o = const describe the 

motion of the body in question. Hence the investigation of the stability of its motion 

reduces to the study of behavionr of the functions (7.3). Obviously, the condition that the 

roots of the characteristic equation (7.4) are real, is the criterion of the stability of 

motion. Below, we shall try to determine this condition. 

8. First, we shall consider a few particular cases. a) The length of the string I + 0. 

Then, the characteristic equation (7.4) takes the form 

(A* + h1) A3 - IC + (A+ + k) 111 cd8 - [K - k-a2 (1 - q) - Co?q] L + Kq = 0 (8.1) 

Note, that even as far as the notations are concerned, the equation (8.1) coincides 

with the equation obtained in papers [I] and [3] in the investigation of the stability of a 

gyroscope with an ellipsoidal cavity completely filled with an ideal fluid.* a) The cavity 

has a spherical form. Then a = c and, according to equation (6.7) and the third relation 

of (7.2). k = 0, v = 0. The characteristic equation (7.4) takes the form 

(8.2) 

One of the roots of the equation (8.2) is equal to zero, and the remaining four roots, 

can easily be shown to be located on the intervals 

Thus, the motion of the body possessing a spherical cavity completely filled with an 

ideal fluid, is always stable. It has the same character, as the motion of a denae rigid 

body undergoing a rotation, investigated in [2]. 

9. Let us now return to the study of the stability of the motion of a rigid body with 

l With the reservation that the sign of the momentum K is opposite to that used in the case 

investigated in [I] and [3]. 
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an ellipsoidal cavity completely filled with an ideal incompressible fluid. For that par- 

pose we consider the characteristic equation (7.4) and attempt to determine the conditions 

for its roots to be real (i.e. the conditions of stability of motion). 

A series.of criteria are available for determining real roots of algebraic equations of 

the n -th order (See for instance f6] ). H owever, in the present case (because of the com- 

plexity of the coefficients of the equations (7.41, these criteria sre very cumbersome and 

consequently of little use for the study of stability conditions for the body under investiga- 

tion, when the parameters entering the equation (7.1) of its motion, are subject to an arbi- 

trary variation. below is given a graphical-analytical method of investigation of the roots 

of the equation (7.4). It enables us to determine easily the zones of stable and unstable 
motion of the body in question for arbitrary values of its angular velocity w. 

In agreement with the rule of Descartes [7], th e number of positive roots of the equa- 

tion (7.4), for any values of the parameter GJ > 0, cannot be greater than three* and the 

number of negative roots cannot be greater than two, It will be shown later that the 

equation (7.4) for o > 0 has always two negative roots. 

In fact, taking into consideration the equalities (7.2) and (7.5) we have 

f(--y’gll, c++ (A* - A”) (0~ I’-8) > 0 (9.1) 

However, f (- 00; ‘CII) < 0 and f @;a) < 0. Consequently, ia each of the 

intervals - oa < h < - fg-/>snd - l/g/l < h < 0 , there is one (negative) 

root of the equation (7.4). 

To determine the character of the three remaining roots of the eqnation (7.4) let IIS 

collect the terms of its left hand side in decreasing powers of o i.e. 

p(k) 69 - q (h)w + r(k) = 0 (9.2) 

Where 

P(h)=h(P- ;)Eq’, q(h)=q Ifi (h) $- A2 (h2- $) (+-X)1, T(h) = hfi(k)(9.3) 

Ii (A) = (A0 + fcqp* - iK + f (A* + kq) IA2 + $. K 

E _ C?+k@--“0 - 
rlB > 0, x = k(f -q;y - ?*f> 0, (8 -x) > 0 (9.4) 

Curves representing the polynomials p (A), q (A), and r (A) for h&.0 are shown in 

Fig. 4. The analysis of the curves obtained shows that for h&O, the polynomial t (& 

becomes equal to zero at A = 0 and at two other values of h denoted by h, and h,, Similarly 

the polynomial q (& is equal to zero only when & = hIo , and h = hao. Finally, 

the polynomial p (X) is eqnal to zero either when X = 0, of X = fi / 1/2. 

+ In case of o = 0, four roots of the equation (7.4) sre real, and the fifth is equal to zero. 
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FIG. 4 

It is possible to solve the equa- 

tion (9.2) for w and construct the 

curve representing the function 

0 (A) = (9.51 

From this curve, it is posaible 

to establish for the given value of 

the angular velocity W, whether all 

the roots of the equation (7.4) with 

respect to A are real and,coneequently, 

whether the motion of a rigid body 

with a fluid filled cavity is atable, 

or not. 

Within the range of values of X 

for which the discr~in~t 

(9.6) 

is positive, the values of o,according to the formula (9.5) are complex conjugate quantities. 

This will occur in the intervals (h,*, A,**) and (h.t*, As**), where hi*, h2*, 

and Al**, A,** are the positive roots of the pol~omial A 011; these roots (as well as 

the negative roots poseeasing the same mod&l exist for any valnss of the pnrsmetsrs 

entering the expression (9.6). This can be proven by expressing the discriminant A (u 
in the form of a product 

A(h) = - 72 D?(h) - A2 (I? -$) (vi + 3/;;)2] x 

x [R (A) - A2 (&a - $) (j/-i - y-$2] 
(9.7) 

and taking into account the form of the polynomial R (A) according to the first formula (9.4). 

According to the formula (9.51 both values of o.t become equal for the values of #& which 

coincide with one of the roots of the discrim~ant A @I. Let us denote them by 

or*, aa*, 01 
** and or**. We find that they correspond to the cusps on the curve 

o = co (h). This curve is shown in Fig. 5. When conetmcting it, one must take into con- 

sideration the distribution of the ueroa of the polynomials p (h), q (A) and r (A1 deter- 

mined by the formulas (9.3) and by the Fig. 4. In the intervals @I*, WI**) and (w2*, 

@a*“) (see Fig. 51, the fifth order equation (7.4) iu X has only three reaf roots (two of 

which are negative) for each oaloe of w. The ramaining two toots are complex. 

Following the exposition made above, we come to the following conclusion : the 

motion of a rigid body with an ellipsoidal cavity completely filled with an ideal incompressible 
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fluid is unstable for values of the angular velocity varying between the limits 

or* < 0 < 01** and Or*<0 <or**. Outside these intervals the motion of the 

body in question is stable. 

10. The critical values aI*, or**, OS*, and we** of the angular velocity are deter- 

mined by the expression (9.5) in which we put 

q2 (h) - 4p (h)r (h) = - A (h) = 0 

This results in the following simple formulas 

o1” = P ~~l*.*) -= 
2P (Al*) 

e-I/EXh* 
89 

1 , 02 *= -- q&*) _e- G ha+ 

2~ WI erl 

o1*iI’ _ q @I**) _ a + vex 02** _ 7 (L*+) _ s + fz 
(10.1) 

-2p)- eq 
?Q** 

’ -2p- erl 
?v,** 

in which, as mentioned before hr*, J,r**, i2* and A,** are respective positive roots of 

the discriminant A (A). 

11. As an example, we shall determine the critical values of the angular velocity o 

of the rotation of a rigid body, the parameters of which are given below : 

A = 15.84, C = 3.74 [gram set’], m = 0.8145, ml = 0.0334 [gram aec’ cm-l] 

a = 1.5, c = 4.35, I, = 6.6, 6 = 5.5, 10 50 [cm] 

In this case, by the formulas (10.1) ol* = 48, or** = 53, aa* = 264, and 

oa** = 399 [rev/min]. Thus, for values of w 48 < 0 < 53, and 264 < o < 309 rev/min, 

the motion of the body in question ia unstable. For all values of w outside these intervals 

it is stable. 

The critical values of the angular velocity were also calculated for the same para- 

metric values by using the criterion given&t [6]. They were found to be equal to those 

determined above, their determination however, required a much greater amount of work. 

‘12. In order to check the criterion of stability obtained above for the motion of a 

rigid body with a fluid-filled cavity, experimental investigations described in [8], were 

made at the physico-technical laboratory of the Institute of Mechanics of the Academy of 

Sciences of the Ukrainian SSR by E.V. Virt, and A.P. Polyvianna under the supersions of 

Dr. Malashenko. 

The model which consisted of a hollow body which had cylindrical insert inside it was 

fixed to the axle of a vertical motor by means of a thin strfng or a capron thread. 

The insert consisted of two separate parts which could be hermetically sealed to pro- 

duce an ellipsoidal cavity (see Fig.7 in[8]). In the top part of the insert there was an opening 

through which the cavity could be filled with fluid (in the experimenta described, ethanol 

was used). 
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The angular velocity of the model was 

varied between the limits of 100 and 3000 
-_________ rev/min. The stabilization of the anguIar 

velocity was accomplished by means of a 

precision sound generator and a thyrathron. 

The stability for instability) of the 

motion of the model at varfous values of 

the angular velocity was determined by 

tapping the model slightly and observing 

the resulting behavior. 

FIG. 5 Experimental results with the model 

considered in section 11 have shown that 

the motion of the model was atable over tba interval of l~-Z~ rev/mitt. In the 220-450 rev/ 

mfn range it loot the stability but regained if above 450 rev/min. 

the 

set 

The experimental determination of the limits of the first region of critical values of 

angular velocity (see section 11 of this work) was not attempted. (The experimental 

up could not be used for angular velocities leas than 100 rev/min). 
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