ON THE STABILITY OF ROTATION OF A RIGID BODY
SUSPENDED ON A STRING AND POSSESSING AN ELLIPSOIDAL
CAVITY COMPLETELY FILLED WITH AN IDEAL
INCOMPRESSIBLE FLUID
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The present study of the stability of the rotation on a string of a solid with a cavity filled
with an ideal fluid, again uses the method developed in [1]. The principle of this method
consists in the description of the motion of the fluid with respect to a system of coordinates
fixed with respect to the rigid bodyyperforming motion under the action of the fluid, its own
weight and reaction forces of the suspension.

The problem considered below was, with the fluid absent, investigated in [2]. Another
limiting case corresponding to a string of zero length is the well known problem of Sobolev,
investigated in [1 and 3]. We shall utilise some of the methods from the above works.

1. Let a symmetric rigid body suspended on an ideally flexible,inextensible and
inertialess string of length /, rotate with a constant angunlar velocity @ about a vertical
axis in a steady motion (Fig. 1).Inside the body, there is a cavity, which has the form of
an ellipscid of revolution, and which is completely filled with an ideal incompressible
fluid. The axes of symmetry of the cavity and of the body coincide. During the steady motion
the fluid rotates with the body, as if they were a single rigid body. We shall investigate
the stability of such a stationary motion.

2. We shall consider first the derivation of the differential equations of the body in
question, assuming that this motion does not differ much from the above mentioned

stationary rotation whose angular velocity about a vertical axis is w.

We shall introduce the fixed system of coordinates £7{ which has the vertical axis {
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and its origin O, at the point of attachment of the string to a fixed

o=

support, and also the moving system £°1°f° with its origin 0, at
the point at whichthebodyis tied to the string (Fig. 2).

The corresponding axes of these systems are parallel. At the

™~

point O we shall also locate the origin of the system of coordinates
xy z rigidly connected to the body. Axis z of this system will
7 coincide with the axes of symme try of the body and the cavity, and

the axes x and y will lie in the plane perpendicular to the axis =
4y ‘ so as to form together a rectangular system of coordinates.

e &

[
I':"l""

The position of the string with respect to the system {9
[ will be defined by two angles A and i1 ; at the same time, A is the

angle between the axis { and the projection on the axis 7 { of the
straight line directed upwards along the string, while i is the

2c angle between that line and the plane { (Fig. 2).
FIG. 1
The position of the solid body with respect to the system

£° 1°(° is determined by three Euler-Krylov angles (Fig. 3):

FIG. 2 FIG. 3

the angle a between the axis C° and the projection of the axis of symmetry of the body
(axis £) on the plane M°L° ; the angle B between the axis z and the same plane n°g°
and the angle @ between the axis x and the auxiliary axis £’ which is at the right

angles to the z-axis and lies in the plane £°z.

The cosine table of the angles between the systems of coordinates 57’{ and xy z or
(which is the same), between the £°1°(° and xy z in the above case have the form
3 n 4

x cos Bcos @ sinasinfBcos ¢ 4 —sin B cos a cos @ +-
+ cosasing + sin asin @ (2.1)
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Y —cosfBsin @ —sinasinfBsing 4 sinf cosasin ¢ +
+ cosacos @ - sinacos@
z sin 8 —sinacosf cosacosfB

It is easy to see from Fig. 3 that the projections @, ®, and w, of the angular

velocity of the system of coordinates xyz on its own axes will be

do (I
wx=mcosﬂcosq> + 5 sin @

da . dB
®y = — — €OS p sin @ + - cos ¢ (2.2
da . d
o = Gsin B+,

For future use we shall also define the coordinates of the point O at which the body is
attached to the string in terms of the system {7{. We have

o = — lsinp, my= lcosp sin A, o = — lcospcosh (2.3)

The expression for the kinetic energy of the solid can be written in the form
o, o, o, (2.4)

T=gmd+m|% Yo %o |4 2 [(4d+ ml?) (00 + 0, + Col

(vl))x (vo)y (Uo)z

Here m is the mass of the rigid body; 4 -+ mi® =B + ml® and C are its
moments of inertia with respect to the axes x, y and z; v, is the absolute velocity of the
origin O of the coordinates; g, Y¥g, Zg are the coordinates of the center of gravity of
the body in the system xy1; [, is the distance between the center of gravity of the body
and the point at which it is attached to the string (Fig. 1).

From the expression (2.4) and the formulas (2.2), and (2.3), we obtain an explicit
expression for the kinetic energy interms of generalized coordinates q, ﬂ, A, and ¢ and
generalized velocities da /dt, dp/dt, dA/dt, du/dt, and dp/dt (the generalized
coordinate ¢ is cyelic), which is

T = = ,:l’( )—{—l"’cos2 (d:‘)z]—}—mlll da cosB[ sinp sin (& —A) 4+

+ o cosp.cos(a—k)]—}— miyl B[dt cosBcosp + -
2.5
+ smpschos(oc——x) @k cosp.smBsm(oc--?»)]-l—

[ rn (2] [ans s 2]

We shall now expreas the equations of motion of the solid by using the second
Lagrange’s method. Restricting ourselves to the infinitesimals of the first order with
respect to the coordinates A, i, &, and 8 and their time derivatives, we obtain the follow-
ing set of linear differential equations with constant coefficients:
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d?) d2a d?
ml(lw—l*lld?):(_)w ml (L5841 52 =0
Q

@ (2.6)

e o dB d?
dtﬂ + CB dt2 dt + < dtz + ll dt?) =

d=3 da do
A g7 — “d??if*ml( dt2+l1dt2>:QB
d do
Cawa =%

3. The right hand sides of the equations (2.6) represent generalized forces which
correspond to selected independent coordinates of the rigid body. These quantities appear
as coefficients on perturbing the corresponding generalized coordinates appearing in the
expression for the elementary work SW done by active forces acting on the b ady during its

arbitrary displacement. We have [4]

OW = Pdry + Loy (3.1)

where P is the principal vector of all the active forces applied to the body and L, is their
principal moment with respect to the point (J; Or, is a possible displacement of the point
0, 8y is the vector of possible angular displacement of the hody.

We shall denote by P;, P,, and Py, the projections of the vector P on the axes £, 7
and {and by La.' L,B' and [, the sums of the moments of the active forces with respect
to the axes £° 7’ and z (Fig. 3).

Then, for small angles . and 8 we shall obtain the following expression for &W
OW = Pyt + Pdng + PdLo + Ladot 4 LgdB + L@ (3.2
or, using (2.3) and assuming that the angles \ and yt are also small quantities
8W =1 (Py + MPy) Oh + L (P — Pr) Op + Lador + LgdB + Lo89  (3.3)
From the last expression it follows
Q, =l(P,+AP), Q. =1(Ppu—Py), @, =L, Qy=1L; Q,=L, 3.9

The active forces acting on the body are the force of gravity mg and the forces
exerted on the body by the enclosed fluid. From this it follows that the generalized force
Q, is equal to zero. In fact, it represents the sum of the moments of the force of gravity
and of the forces due to the pressure of the fluid with respect to the z-axis. However,
because of the symmetry, the center of gravity of the body is on the z-axis and the vector
representing the pressure of the fluid on the body crosses this axis everywhere.

Considering the cosine table (2.1), the formulas (3.3) and the smallness of the

angles ¢, B, A and y, the equations of motion (2.6) can be written in the form

ml( In —i—ll dﬂ) = —mglh + 1 [Fysing + F,cos¢— F,a] -+ IF,A (3.5)
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ml(l o + 1 dﬂ) =—mglp,—l[Fxcosw—Fysinq)-}-F,B] + IF pn

dt2
do d, .
(A + mllz) o % 1+ mlyl dtl —}— c d(:) 7*:‘ = —mglio + M, cosp— M, sin@
‘do d: .
4+ mllz) dt2 llj?; — ‘—dq%d—: = —mgli +M,sin ¢ +M,cos
d dp
@ a ="

In these equations, besides the quantities already known, g is the acceleration due to

gravity and

F, = SS p¥cosavds, F,= SS p*cosyvds, F,= SS p*coszvds (3.6)
g [+) g

are the projections on the axes x, y, and z of the principal vector of the preasure forces

exerted by the fluid on the body.

Similarly
3.7

53 (p*ycoszv— p*zcosyvyds, M, = SS (p*z cos av— p*z cos zv) do
) :
are the pro;ections on the axes x and y of the principal moment of the forces mentioned

earlier, with respect to the point of suspension 0. The integration in the relations (3.6)
and (3.7) is made along the side of the cavity g; cos zv, cos yv and COS zv are the
direction cosines of the external normal v to the surface of the cavity; x, y and z are the

running coordinates of the element of surface do.

The formulas (3.6) and (3.7) see [5]) can be replaced by the following
op* ap*
Fo=\WEar,  F=({Za Fo=\{%a o

M, =\

[ ST

=
[ ]
e
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Here, the integration is performed over the whole volume of the cavity.

4. In order to determine the pressure p* inside the fluid in terms of the coordinates
x, y and z and the time ¢, we shall consider the equations of motion of the fluid with
respect to the moving system of coordinates x y z stationary with respect to the rigid body.
In those equations we shall consider the projections u., U4y, and u, of the relative
velocity of any particle of the fluidjand their derivatives with respect to the coordinates,

to be small. Disregading, furthermore, the products of small quantities, we get
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L e w e w S —pgcosly w2y 4.1
The symbol {xy ) m» sns that the two other formulas are obtained by circular permuta-

tions ; Wx®, Wy°%, and w,¢ are the projections on the x, y and z axes of the translational

acceleration %, W,°, and W;° of the Coriolis acceleration of a fluid particle,

cos Lz, cos Ly, and cos {z are the direction cosines of the axis { in the xy z system

of coordinates. The latter terms are equal to the quantities « Sin @ — B cos Q,

@ cos @ -+ Psin@ and 1 respectively (Fig. 3 and (2.1)), with the accuracy of up to the

second order terms of the small angles & and 3. The projections of translational accelera-

tion are given by the formulas
. do, da, 2
W' =w,’ i g ytos (zox + yo, + 20;) — %2 @) (4.2)

Here w,®, w,°, and 1,° are the projections on the axes %, y and z of the total

acceleration of the point O, which is the origin of xy z coordinate system.

These projections can be expressed with accuracy of up to the second order in terms

of the derivatives ofthe angles ¢, f, A andp by
” . 4.3)
Wl = —1 ‘ft’;'coscp—{-ldt,smqa, w,,":lﬂ‘zi sin@ + 1 —7 cosp, w,'=0

With the same accuracy we obtain by (2.2),
(4.9

da da do
0y = — cos(p+ sm(p, Oy = — - 8i nq>+ cos(p, W= - =0
From the last equation of (3.5) it follows that @ = const, and if we disregard an
unimportant constant, then ¢ = ®f. Neglecting furthermore in the expressions (4.2)
the terms of the second order in @, and @y {which are of the order of dg /dlf and
df . dt), and also the terms which include the derivative of w, with respect to time,
we get
e i do, 2
W' = —1 50089+ 1 Th d,z sing + i %+ 00sz— 0’z
LN do
wr=13F B sin q>+£ e A cos P ——= 2+ 0oz — oy 4.5)

dt
. do, du
w, =7y———gi—w+mmaa:+mmuy

The projections of the Coriolis acceleration on the x, y, and z axes are equal (4] w0
wzc == 2 ((Dyuz — mzuy), ch = 2 (mzux ot (l)xu;), wzc == 2 (mxuu b myux) (4.6)

Here also, one should neglect the terms in which @ and @, appear as multipliers

and write W, =
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Taking the formulas {4.2) and (4.6) into account, the equations (4.1) take the form

du,, 1 éps ‘mv
o 20w =— 2 g wn
o, tom o %0 W 1 opm '
Tt 20 = — ot 2 i = T s
Where
(4.8)

P1=p* + p [0z (20 + Yo ) — 20? (2% + y¥)] + pg [z (2sin@ — B cosp) +
- d
+y(@cos @+ Bsing) + 2] + p (0 + yuy® + zw,?) + pz (y S — s ot

and @y, Oy, Wy, wuo, and 1,0 are determined by the equations (4.3) and (4.4).

The functions y,, u,, and &, must, farthermore, satisfy the condition of incompress-

ibility
oz ' Gy © Oz (4.9
and the boundary condition
Uy COS IV 4 Uy COS YV U008 zv =0 (4.10)

The latter equation means that the projection of the relative velocity of a fluid
particle in contact with the boundary of the cavity, onto the axis normal to this boundary,
is equal to zero.

5. Following the work of Sobolev [3], we search for by "y and u, in the form

. (5.1)
¢
u: = Ux (t) (z + lg), u«y = Uy (t) (z + 32), uz BT — ‘aT' {xe (t) + yUy (t)l

Here U, (f) and Uy (t) are determinable functions of time® ; /, is the distance

between the center of the ellipsoidal cavity and the origin of the xy z coordinate system
(Fig. 1).

We denote the major and the minor semi-axe of the ellipsoidal cavity by a and ¢
respectively. Then, its equation will take the form

Yty (5.2)

a?

and the direction cosines of the normal v in the xy z coordinate system will be

* Also see the note at the beginning of the work [1].
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S TV =£§, cosyv = y—g-,coszv=ﬂz-bﬂ (5.3)
D=V @+ ) + a*(z + LL)° (5.4)

By direct substitution of the relations (5.1) and (5.3) into the boundary condition {4.10)
and using the condition of incompressibility (4.9) we can see that the latter is identically

satisfied.

Let us now counsider the system (4.7). Multiplying its first equation by cos xv, the sec-

ond by cos y» and the third by cos zv and adding, we obtain by utilising also (5.1) and (5.3).

o2 ooty ()t + y[ ot + 2]}

b o y (5.5)
+ ZF2 (2U,y () — YU (1))
The last relation becomes an identity if we write

py =pz [zP* () +yOQ* ()] + p [zP* (1) +y0Q* (9] (5.6)

and choose the functions P* (¢), P,* (¢}, Q% () and ©,* (¢) as follows:
(5.7

d 21 d

P*(t)= [ U,t)— —d“;ﬁ] P* ()= &r_f;a[az —d‘%’ + U, (1) c2]

a*(t)=m[—mvx<t)+%], 0 () =— 2] @ Dt ol (]

Let us now multiply the second equation of the system (4.7) by ; =V:] and add
it to the first, Then by using the equalities (5.1), (5.6), (5.7) and simplyfing by the factor
z + I, we obtain the relation necessary for the determination of the functions U, (t) and
U y {8), l.e.

[(@+ o) o+ 208 | (0L () + iU, (1 = 204 (G4 %0 )

6. Now, let us investigate the system (3.5). Let us multiply its second and fourth
equations by [ = V=21 and add the first to the second and the third to the fourth.
Then, let us also introduce the complex functions of the real variable ¢

£* =a + if, z* =M 4 ip (6.1)

Taking into consideration the third equality of (4.4) we have

»*
(4 + mlf) o —iCo % Ml mglt* = (M. + M) eiot

( a -+ b dts)"l‘(mg—Fz)z*'—‘—i(Fx“f‘iFv)ei‘"'—Fzg*

(6.2)
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To calculate the expressions F, - iFy, F,, and My 4 iM,, which appear
in the right hand sides of the system (6.2), we substitute into the formulas (3.8) and (3.9)
the expressions for the pressure p* found by eliminating the variable p, between the
relations (4.8) and (5.6). Also we note, that

S‘S paz dv = SSS pry dt = BSS pzydt =0, vSS p(a?—ydr =0

[oodr=[ovds=0, [fode=rm (fordem —mis @o

S Sp(za_yz) dt = SSSp(zz_.a;ﬂ) dt = 745— npade (cz___az) 1+ myly?

T T
Here, in addition to the symbols already seen earlier, p and m, represent respectively
the specific density and the mass of the fluid which fills the ellipsoidal cavity of the
rigid body.

If, furthermore, we notice that according to the formula (4.3), (4.4) and (6.1)

dg*

1 — ~iwi 0 0,8 = il az* —jui
mx—{—lmym'&—t"e N W —[—le =1 'd't"z"e {6.4)

then, after a few rather simple calculations and the use of the equalities (5.7), (5.8) we
get the required expressions of F,, | iF, and F,

. I, diz* a2 :
FotiFy=—mill G5+ bS5 + gt*]e™,  Fi——mg 69

and also the differential equation for M, - iM,, which is

Mt My = k(@) TN + 2000t BLHAE + (a2 + o) 0* dlejat
. =

@ F ) d/di - Zodki gt 66
dege dizr . '
- [mxlas d—i + maglol* + mylyl 7% + lok %‘g{] e-tot
where
ho—4 8p (p% o o2
/ismpate (¢ a?) ©.7)

7. Eliminating F, - iFy, F, and M, -}- iM, from (6.2) by using the relation
(6.5) and (6.6) we obtain the following system of equations with respect to the complex
functions of time (* and z*

(4% k) Z5 — 0 [C 4 (4% + Byl S 4 (K —o? (Cn—Fn + 1) 5 —

— LNKT* + (mly -+ myls) l%;—' ionl (ml; - mily) Q;_:; =

d2z* di*

7.1}
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Where
A* =4 + n1112 —l— mllzz, - ¢ —a? . = mly + mala
K= g(mll + m112)7 = ¢+ a?’ ¢ -y (7.2)

We assume that the solution of (7.1) has the form

— [0,
E* = 0eiM, 2% — gOgint (7.3)
At the same time, the characteristic equation reduces to the following:

f o) = (A +ImAS — 0 [C 4 (4° + kIt - [— K — (A% + /) £ +

+ Cotn + kot (1 — W@ 4 [Kn + CE + LA + Bl on® + ,
+£ 1K — ko? (1 — ) — Cotnl A — Kon =0

Where
A = A* — z, (mly + myly)
(7.5)

The equations (7.1) together with the equality ®,; = ® = const describe the
motion of the body in question. Hence the investigation of the stability of its motion
reduces to the study of behaviour of the functions (7.3). Obviously, the condition that the
roots of the characteristic equation (7.4) are real, is the criterion of the stability of

motion. Below, we shall try to determine this condition.

8. First, we shall consider a few particular cases. a) The length of the string [ -+ 0.
Then, the characteristic equation (7.4) takes the form

(A* + k) A — [C + (4* + k) n] oA — [K — ko? (1 — ) — Co™] A + Kon = 0(8.1)

Note, that even as far as the notations are concerned, the equation (8.1) coincides
with the equation obtained in papers [1] and [3] in the investigation of the stability of a
gyroscope with an ellipsoidal cavity completely filled with an ideal fluid.* 5) The cavity
has a spherical form. Then g = ¢ and, according to equation (6.7) and the third relation
of (7.2), k =0, n = 0. The characteristic equation (7.4) takes the form

(8.2)

C g (mly + myls) (1 + 2¢) C g gt mly 4+ mla)
;.{;.‘—Fw——l—[w L] “}m+mm,—k+7—l—;o—¥j:0

One of the roots of the equation (8.2) is equal to zero, and the remaining four roots,
can easily be shown to be located on the intervals

(_' 00y — Vm)a (— V%Tlv O) (0, Vg—/-l)’ (Vg_/l, °°)

Thus, the motion of the body possessing a spherical cavity completely filled with an
ideal fluid, is always stable. It has the same character, as the motion of a dense rigid
body undergoing a rotation, investigated in [2].

9. Let us now return to the study of the stability of the motion of a rigid body with

* With the reservation that the sign of the momentum K is opposite to that used in the case
investigated in [1] and [3].
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an ellipsoidal cavity completely filled with an ideal incompressible fluid. For that pur-
pose we consider the characteristic equation (7.4) and attempt to determine the conditions

for its roots to be real (i.e. the conditions of stability of motion).

A series of criteria are available for determining real roots of algebraic equations of
the n-th order (See for instance [6]). However, in the present case {because of the com=
plexity of the coefficients of the equations (7.4), these criteria are very cumbersome and
consequently of little use for the study of stability conditions for the body under investige-
tion, when the parameters entering the equation {7.1) of its motion, are subject to an arbi-
trary variation. Below is given a graphical-analytical method of investigation of the roots
of the equation (7.4). It enables us to determine easily the zones of stable and unstable
motion of the body in question for arbitrary values of its angular velocity w.

In agreement with the rule of Descartes [7], the number of positive roots of the equa-
tion (7.4), for any values of the parameter ¢s > 0, cannot be greater than three* and the
number of negative roots cannot be greater than two. It will be shown later that the

equation (7.4) for @ > 0 has always two negative roots.

In fact, taking into consideration the equalities (7.2) and (7.5) we have
H=V el @)=-5- (4* — 4°) (on Vg/)) >0 ©.1)

However, f (— oo;®) < 0 and f (0;0) < O Consequently, in each of the
intervals — oo < A < — Vg_ﬁ and VET[ < A< 0 , there is one (negative)

root of the equation (7.4).

To determine the character of the three remaining roots of the equation (7.4) let us
collect the terms of its left hand side in decreasing powers of @ i.e.

pMe® —gMe +r(d) =0 (9.2)
Where
p(A) =4 (W= Den?, g(M)=n [R (M) + 1 (B £) (e—x)], r (A) = AR(V) (9.9)
RO =@ +M — (K + £ (4* + i ¢ + £k
g = W>O, % =ﬂ1:*%M>0, (e—%) >0 (9.4)

Curves representing the polynomials p (A), ¢ (A), and r (A) for A 3.0 are shown in
Fig. 4. The analysis of the curves obtained shows that for A >0, the polynomial r (A)
becomes equal to zero at A=0 and at two other values of A denoted by A, and A,. Similarly
the polynomial ¢ (\) is equal to zero only when 3 =A% ,and A = A.". Finally,
the polynomial p (A} is equal to zero either when A =0, or A = V—g_ V.

* In case of @ = 0, four roots of the equation (7.4) are real, and the fifth is equal to zero.
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It is possible 1o solve the equa-
tion (9.2) for  and constract the

curve representing the function

o (M) = 9.5)
_ AWM+ VEN —dp W) ()
2p (%)

From this curve, it is possible
to establish for the given value of
the angular velocity w, whether all
the roots of the equation (7.4) with
respect to A are real and,consequently,
whether the motion of a rigid body
with a fluid filled cavity is stable,

or not.
FIG. 4
Within the range of values of A
for which the discriminant
AQ) =4p(Mr(h) — g(n) (9.6)

is positive, the values of w,according to the formula (9.5) are complex conjugate quantities.
This will occur in the intervals (A,*, A;**) and (Ag*, A**), where A%, A%,
and A *¥ A,** are the positive roots of the polynomial A (A); these roots (as well as
the negative roots possessing the same moduli) exist for any values of the parameters
entering the expreasion (9.6). This can be proven by expressing the discriminant A (A)

in the form of a product

AR = —n? [R(W) — 22 (2 —5) (Ve + Vw2l
XIBM =@ — ) (Ve —Vapl

and taking into account the form of the polynomial R (A) according to the first formula (9.4).

©.7)

According to the formula (9.5) both values of @ become equal for the values of A, which
coincide with one of the roots of the discriminant A (A). Let us denote them by
®%, 0%, ©** and ©,**. We find that they correspond to the cusps on the curve
® = o (A). This curve is shown in Fig. 5. When constructing it, one must take into con-
sideration the distribution of the zeros of the polynomials p (A), g (A) and r (A) deter-
mined by the formulas (9.3) and by the Fig. 4. In the intervals (©,*, ®:**) and (@;*,
©3**) (see Fig. 5), the fifth order equation (7.4) in A has only three real roots (two of

which are negative) for each calue of 0. The remaining two roots are complex.

Following the exposition made above, we come to the following conclusion : the
motion of a rigid body with en ellipsoidal cavity completely filled with an ideal incompressible
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fluid is unstable for values of the angular velocity varying between the limits
0¥ <o < 01** and @,* <o < ®5** | Outside these intervals the motion of the

body in question is stable.

10. The critical values ©,*, m,**, @2*, and @;** of the angular velocity are deter-

mined by the expression (9.5) in which we put

EMN —4dpMWNr(y)=—A®} =0

This results in the following simple formulas

s aM®) _e—Vex, 4 x _ q(*) _e—Vex,
O = o8] T en M O = ) T e M
— — (10.1)
@ *F = q(h**)_e%—lfexh** ¥ ¥ — g (Ae**) ___5+V3“}v**
LT 2p (™) T e to 2T 2p (W) e 2

in which, as mentioned before ), * A ** A,*and A,** are respective positive roots of
the discriminant A (A).

11. As an example, we shall determine the critical values of the angular velocity &

of the rotation of a rigid body, the parameters of which are given below:

A =15.84, C =3.74 [gram sec?], m = 0.8145, m, = 0.0334 [gram sec? cm™']
a=1.5,¢c=4.351,=66, L =5.5 =50 [cm]

In this case, by the formulas (10.1) ©* = 48, o** = 53, w,* = 264, and
®** = 309 [tev/min]. Thus, for values of @ 48 < o < 53, and 264 << & <C 309 rev/min,
the motion of the body in question is unstable. For all values of @ outside these intervals
it is stable.

The critical values of the angular velocity were also calculated for the same para-
metric values by using the criterion given in [6]. They were found to be equal to those
determined above, their determination however, required & much greater amount of work.

‘12. In order to check the criterion of stability obtained above for the motion of a
rigid body with a fluid-filled cavity, experimental investigations described in [8], were
made at the physico-technical laboratory of the Institute of Mechanics of the Academy of
Sciences of the Ukrainian SSR by E.V. Virt, and A.P. Polyvianna under the supersions of
Dr. Malashenko.

The model which consisted of a hollow body which had cylindrical insert inside it was
fixed to the axle of a vertical motor by means of a thin string or a capron thread.

The insert consisted of two separate parts which could be hermetically sealed to pro-
duce an ellipsoidal cavity (see Fig.7in[8]). In the top part of the insert there was an opening
through which the cavity could be filled with fluid {in the experiments described, ethanol
was used).
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The angular velocity of the model was

:: varied between the limits of 100 and 3000

tev/min. The stabilization of the angular

velocity was accomplished by means of a
precision sound generator and a thyrathron.

- The stability {or instability) of the
motion of the model at various values of
the angular velocity was determined by
tapping the model slightly and observing
the resulting behavior.

K% ol

FIG. 5 Experimental results with the model
considered in section 11 have shown that
the motion of the model was stable over the interval of 100-200 rev/min. In the 220-450 rev/
min range it lost the stability but regained if above 450 rev/min.

The experimental determination of the limits of the first region of critical values of
the angular velocity (see section 11 of this work) was not attempted. {The experimental
set up could not be used for angular velocities less than 100 rev/min).
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